Mapping of the Classical Mutation rosette Highlights a Role for Calcium in Wound-induced Rooting

Author:

Modrego Abelardo,Pasternak Taras,Omary Moutasem,Albacete Alfonso,Cano Antonio,Pérez-Pérez José ManuelORCID,Efroni IdanORCID

Abstract

AbstractRemoval of the root system induces the formation of new roots from the remaining shoot. This process is primarily controlled by the phytohormone auxin which interacts with other signals in a yet unresolved manner. Here, we study the classical tomato mutation rosette (ro) which lacks shoot-borne roots. ro plants were severely inhibited in the formation of wound-induced roots and have reduced rates of auxin transport. We mapped ro to the tomato ortholog of the Arabidopsis thaliana BIG and the mammalians UBR4/p600. RO/BIG is a large protein of unknown biochemical function. In A. thaliana, BIG was implicated in the regulation of auxin transport and calcium homeostasis. We show that exogenous calcium inhibits wound-induced root formation in both tomato and A. thaliana ro/big mutants. Exogenous calcium antagonized the root-promoting effects of the auxin IAA, but not of 2,4-D, an auxin analog that is not recognized by the polar transport machinery, and accumulation of the auxin transporter PIN1 was sensitive to calcium levels in the ro/big mutants. Consistent with a role for calcium in mediating auxin transport, both ro/big mutants and calcium-treated wild-type plants were hypersensitive to treatment with polar auxin transport inhibitors. Subcellular localization of BIG suggests that like its mammalian ortholog, it is associated with the endoplasmic reticulum (ER). Analysis of subcellular morphology revealed that ro/big mutants exhibited disruption in cytoplasmic streaming. We suggest that RO/BIG maintain auxin flow by stabilizing PIN membrane localization, possibly by attenuating the inhibitory effect of Ca2+ on cytoplasmic streaming.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3