Coevolution of reproducers and replicators at the origin of life and the conditions for the origin of genomes

Author:

Babajanyan Sanasar G.,Wolf Yuri I.,Khachatryan Andranik,Allahverdyan Armen,Lopez-Garcia Purificacion,Koonin Eugene V.

Abstract

AbstractThere are two fundamentally distinct but inextricably linked types of biological evolutionary units, reproducers and replicators. Reproducers are cells and organelles that reproduce via various forms of division and maintain the physical continuity of compartments and their content. Replicators are genetic elements (GE), including genomes of cellular organisms and various autonomous elements, that both cooperate with reproducers and rely on the latter for replication. All known cells and organisms comprise a union between replicators and reproducers. We explore a model in which cells emerged via symbiosis between primordial ‘metabolic’ reproducers (protocells) which evolved, on short time scales, via a primitive form of selection and random drift, and mutualist replicators. Mathematical modeling identifies the conditions, under which GE-carrying protocells can outcompete GE-less ones, taking into account that, from the earliest stages of evolution, replicators split into mutualists and parasites. Analysis of the model shows that, for the GE-containing protocells to win the competition and to be fixed in evolution, it is essential that the birth-death process of the GE is coordinated with the rate of protocell division. At the early stages of evolution, random, high-variance cell division is advantageous compared to symmetrical division because the former provides for the emergence of protocells containing only mutualists, preventing takeover by parasites. These findings illuminate the likely order of key events on the evolutionary route from protocells to cells that involved the origin of genomes, symmetrical cell division and anti-parasite defense systems.SignificanceThe origin of life, which is equivalent to the origin of cells, is arguably the greatest enigma in biology. The remarkable complexity characteristic of even the simplest extant cells could only evolve from simpler, pre-biological entities. Reconstructing that pre-cellular stage of evolution is a hard challenge. We present an evolutionary scenario in which cells evolved via symbiosis between protocells that harbored protometabolic reaction networks, could divide and were subject to selection, but lacked genomes, and primordial genetic elements. Mathematical modeling reveals conditions for the survival of such symbionts and the origin of modern-type genomes, in particular, coordination of the rates of protocell division and replication of genetic elements as well as random division of protocells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3