Development shaped by cue reliability in the barn owl’s auditory midbrain

Author:

Shadron KeanuORCID,Peña José L

Abstract

AbstractSensory systems display capability to preferentially choose stimuli based on their reliability at conveying accurate information. While previous reports have shown the ability of the brain to reweigh cues based on ongoing or dynamic changes in reliability, how the brain may learn and maintain neural responses to sensory statistics expected to be stable over longer time periods remain significant open questions of potential mechanisms underlying naturalistic biased perception. This study provides evidence that the barn owl’s midbrain is shaped by permanent statistics experienced during development. The barn owl’s midbrain features a topographic map of auditory space where neurons compute horizontal sound location from the interaural time difference (ITD). Previous work has shown that frequency tuning of these midbrain map neurons is correlated with the pattern of most reliable frequencies for the neurons’ preferred ITD. This pattern of ITD reliability is due to the filtering properties of the head, primarily determined by the facial ruff in the barn owl. In this study, we found that the absence of a facial ruff led to a decrease in the reliability of high frequencies originating from frontal space. To test if the owl’s frequency tuning of midbrain map neurons is driven by permanent changes in the pattern of ITD reliability, these neurons were recorded from adult owls, who had the facial ruff removed as juveniles, and from juvenile owls, before the facial ruff developed. In both groups, we found that frontally-tuned neurons displayed tunings to frequencies lower than reported in normal adult owls, consistent with the difference in ITD reliability between the normal and ruff removed conditions. Juvenile owls also exhibited more heterogeneous frequency tuning, suggesting developmental processes that refine tuning to match the pattern of ITD reliability. Additional recordings immediately upstream of the midbrain map displayed ITD tuned neural responses for all frequencies across the owl’s normal hearing range. Broader analysis of the effects of ruff-removal on the acoustical properties of spatial cues indicated a dominant role of ITD reliability in driving the adaptive changes in frequency tuning. These results support the hypothesis that frequency tuning in the midbrain map is developmentally adapted to permanent statistics of spatial cues, implementing probabilistic coding for sound localization.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3