Quartet RNA reference materials and ratio-based reference datasets for reliable transcriptomic profiling

Author:

Yu YingORCID,Hou Wanwan,Wang Haiyan,Dong Lianhua,Liu YaqingORCID,Sun Shanyue,Yang Jingcheng,Cao Zehui,Zhang Peipei,Zi Yi,Li Zhihui,Liu Ruimei,Gao Jian,Chen Qingwang,Zhang Naixin,Li Jingjing,Ren LuyaoORCID,Jiang He,Shang Jun,Zhu Sibo,Wang Xiaolin,Qing Tao,Bao Ding,Li Bingying,Li Bin,Suo Chen,Pi Yan,Wang Xia,Dai Fangping,Scherer Andreas,Mattila Pirkko,Han Jingxiong,Zhang Lijun,Jiang Hui,Thierry-Mieg Danielle,Thierry-Mieg Jean,Xiao Wenming,Hong Huixiao,Tong Weida,Wang Jing,Li Jinming,Fang Xiang,Jin Li,Shi LemingORCID,Xu Joshua,Qian Feng,Zhang Rui,Zheng YuantingORCID,

Abstract

AbstractAs an indispensable tool for transcriptome-wide analysis of differential gene expression, RNA sequencing (RNAseq) has demonstrated great potential in clinical applications. However, the lack of multi-group RNA reference materials of biological relevance and the corresponding reference datasets for assessing the reliability of RNAseq hampers its wide clinical applications wherein the underlying biological differences among study groups are often small. As part of the Quartet Project for quality control and data integration of multiomic profiling, we established four RNA reference materials derived from immortalized B-lymphoblastoid cell lines from four members of a monozygotic twin family. Additionally, we constructed ratio-based transcriptome-wide reference datasets using multi-batch RNAseq datasets, providing “ground truth” for benchmarking. Moreover, Quartet-sample-based quality metrics were developed for assessing reliability of RNAseq technology in terms of intra-batch proficiency and cross-batch reproducibility. The small intrinsic biological differences among the Quartet samples enable sensitive assessment of performance of transcriptomic measurements. The Quartet RNA reference materials combined with the reference datasets can be served as unique resources for assessing data quality and improving reliability of transcriptomic profiling.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3