G-quadruplex landscape and its regulation revealed by a new antibody capture method

Author:

Datta Subhamoy,Patel Manthan,Sathyaseelan Chakkarai,Ghosh Chandrama,Mudgal Akanksha,Patel Divyesh,Rathinavelan ThenmalarchelviORCID,Singh UmashankarORCID

Abstract

ABSTRACTOur understanding of DNA G-quadruplexes (G4s) fromin vitrostudies has been complemented by genome-wide G4 landscapes from cultured cells. Conventionally, the formation of G4s is accepted to depend on G-repeats such that they form tetrads. However, genome-wide G4s characterized through high-throughput sequencing suggest that these structures form at a large number of regions with no such canonical G4-forming signatures. Many G4-binding proteins have been described with no evidence for any protein that binds to and stabilizes G4s. It remains unknown what fraction of G4s formed in human cells are protein-bound. The G4-chromatin immunoprecipitation (G4-ChIP) method hitherto employed to describe G4 landscapes preferentially reports G4s that get crosslinked to proteins in their proximity. Our current understanding of the G4 landscape is biased against representation of G4s which escape crosslinking as they are not stabilized by protein-binding and presumably transient. We report a protocol that captures G4s from the cells efficiently without any bias as well as eliminates the detection of G4s formed artifactually on crosslinked sheared chromatin post-fixation. We discover that G4s form sparingly at SINEs. An application of this method shows that depletion of a repeat-binding protein CGGBP1 enhances net G4 capture at CGGBP1-dependent CTCF-binding sites and regions of sharp interstrand G/C-skew transitions. Thus, we present an improved method for G4 landscape determination and by applying it we show that sequence property-specific constraints of the nuclear environment mitigate G4 formation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3