Quartet DNA reference materials and datasets for comprehensively evaluating germline variants calling performance

Author:

Ren Luyao,Duan Xiaoke,Dong Lianghua,Zhang Rui,Yang Jingcheng,Gao Yuechen,Peng Rongxue,Hou Wanwan,Liu Yaqing,Li Jingjing,Yu Ying,Zhang Naixin,Shang Jun,Liang Fan,Wang Depeng,Chen Hui,Sun Lele,Hao Lingtong,Scherer Andreas,Nordlund Jessica,Xiao Wenming,Xu Joshua,Tong Weida,Hu Xin,Jia Peng,Ye Kai,Li Jinming,Jin Li,Shi Leming,Hong Huixiao,Wang Jing,Fan Shaohua,Fang Xiang,Zheng Yuanting,

Abstract

AbstractCurrent methods for evaluating the accuracy of germline variant calls are restricted to easy-to-detect high-confidence regions, thus ignoring a substantial portion of difficult variants beyond the benchmark regions. We established four DNA reference materials from immortalized cell lines derived from a Chinese Quartet including parents and monozygotic twins. We integrated benchmark calls of 4.2 million small variants and 15,000 structural variants from multiple platforms and bioinformatic pipelines for evaluating the reliability of germline variant calls inside the benchmark regions. The genetic built-in-truth of the Quartet family design not only improved sensitivity of benchmark calls by removing additional false positive variants with apparently high quality, but also enabled estimation of the precision of variants calls outside the benchmark regions. Batch effects of variant calling in large-scale DNA sequencing efforts can be effectively identified with the concurrent use of the Quartet DNA reference materials along with study samples, and can be alleviated by training a machine learning model with the Quartet reference datasets to remove potential artifact calls. Matched RNA and protein reference materials were also established in the Quartet project, thereby enabling benchmark calls constructed from DNA reference materials for evaluation of variants calling performance on RNA and protein data. The Quartet DNA reference materials from this study are a resource for objective and comprehensive assessment of the accuracy of germline variant calls throughout the whole-genome regions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3