The amyloid precursor protein regulates synaptic transmission at medial perforant path synapses

Author:

Lenz MaximilianORCID,Eichler AmelieORCID,Kruse PiaORCID,Galanis ChristosORCID,Kleidonas DimitriosORCID,Jedlicka PeterORCID,Müller UlrikeORCID,Deller ThomasORCID,Vlachos AndreasORCID

Abstract

SUMMARYThe perforant path provides the main cortical excitatory input to the hippocampus. Due to its important role in information processing and coding, entorhinal projections to the dentate gyrus have been studied in considerable detail. Nevertheless, a characterization of synaptic transmission between individual connected pairs of entorhinal stellate cells and dentate granule cells is still pending. Here, we have used organotypic entorhino-hippocampal tissue cultures, in which the entorhino-dentate (EC-GC) projection is present and EC-GC pairs can be studied using whole-cell patch clamp recordings. Using cultures of wildtype mice, the properties of EC-GC synapses formed by afferents from the lateral and medial entorhinal cortex were compared and differences in short-term plasticity were revealed. Since the perforant path is severely affected in Alzheimer’s disease, we used cultures of APP-deficient mice to address the role of the amyloid-precursor protein (APP) at this synapse. APP-deficiency caused alterations in excitatory neurotransmission at medial perforant path synapses that were accompanied by transcriptomic and ultrastructural changes. Moreover, the deletion of pre- but not postsynaptic APP through the local injection of Cre-expressing AAVs in conditional APPflox/flox tissue cultures increased the efficacy of neurotransmission at perforant path synapses. Together, these data suggest a physiological role for presynaptic APP at medial perforant path synapses, which may be adversely affected under conditions of altered APP processing.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3