Refining epigenetic prediction of chronological and biological age

Author:

Bernabeu ElenaORCID,McCartney Daniel L,Gadd Danni A,Hillary Robert FORCID,Lu Ake T,Murphy Lee,Wrobel Nicola,Campbell Archie,Harris Sarah EORCID,Liewald David,Hayward Caroline,Sudlow Cathie,Cox Simon R,Evans Kathryn L,Horvath SteveORCID,McIntosh Andrew MORCID,Robinson Matthew R,Vallejos Catalina A,Marioni Riccardo EORCID

Abstract

AbstractEpigenetic clocks can track both chronological age (cAge) and biological age (bAge). The latter is typically defined by physiological biomarkers and risk of adverse health outcomes, including all-cause mortality. As cohort sample sizes increase, estimates of cAge and bAge become more precise. Here, we aim to refine predictors and improve understanding of the epigenomic architecture of cAge and bAge. First, we perform large-scale (N = 18,413) epigenome-wide association studies (EWAS) of chronological age and all-cause mortality. Next, to improve cAge prediction, we use methylation data from 24,673 participants from the Generation Scotland (GS) study, the Lothian Birth Cohorts (LBC) of 1921 and 1936 and 8 publicly available datasets. Through the inclusion of linear and non-linear age-CpG associations from the EWAS, feature pre-selection/dimensionality reduction in advance of elastic net regression, and a leave-one-cohort-out (LOCO) cross validation framework, we arrive at an improved cAge predictor (median absolute error = 2.3 years across 10 cohorts). In addition, we train a predictor of bAge on 1,214 all-cause mortality events in GS, based on epigenetic surrogates for 109 plasma proteins and the 8 component parts of GrimAge, the current best epigenetic predictor of all-cause mortality. We test this predictor in four external cohorts (LBC1921, LBC1936, the Framingham Heart Study and the Women’s Health Initiative study) where it outperforms GrimAge in its association to survival (HRGrimAge = 1.47 [1.40, 1.54] with p = 1.08 × 10−52, and HRbAge = 1.52 [1.44, 1.59] with p = 2.20 × 10−60). Finally, we introduce MethylBrowsR, an online tool to visualize epigenome-wide CpG-age associations.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3