Synthesis of Long RNA with a Site-Specific Modification by Enzymatic Splint Ligation

Author:

Gamper HowardORCID,McCormick Caroline,Tavakoli Sepideh,Wanunu MeniORCID,Rouhanifard Sara H.ORCID,Hou Ya-MingORCID

Abstract

ABSTRACTSynthesis of RNA molecules that contain an internal site-specific modification is important for RNA research and therapeutics. While solid-state synthesis is attainable for such RNA in the range of 100 nucleotides (nts), it is currently impossible with kilobase (kb)-long RNA. Instead, long RNA with an internal modification is usually assembled in an enzymatic 3-part splint ligation to join a short RNA oligonucleotide, containing the site-specific modification, with both a left-arm and a right-arm long RNA that are synthesized by in vitro transcription. However, long RNAs have structural heterogeneity and those synthesized by in vitro transcription have 3’-end sequence heterogeneity, which together substantially reduce the yield of 3-part splint ligation. Here we describe a method of 3-part splint ligation with an enhanced efficiency utilizing a ribozyme cleavage reaction to address the 3’-end sequence heterogeneity and involving DNA disruptors proximal to the ligation sites to address the structural heterogeneity. The yields of the synthesized kb-long RNA are sufficiently high to afford purification to homogeneity for practical RNA research. We also verify the sequence accuracy at each ligation junction by nanopore sequencing.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3