Defining Cardiac Recovery at Single Cell Resolution

Author:

Amrute Junedh M.ORCID,Lai Lulu,Ma Pan,Koenig Andrew L.ORCID,Kamimoto KenjiORCID,Bredemeyer AndreaORCID,Shankar Thirupura S.ORCID,Kuppe ChristophORCID,Kadyrov Farid F.ORCID,Schulte Linda J.,Stoutenburg Dylan,Kopecky Benjamin J.ORCID,Navankasattusas Sutip,Visker Joseph,Morris Samantha A.ORCID,Kramann RafaelORCID,Leuschner FlorianORCID,Mann Douglas L.ORCID,Drakos Stavros G.,Lavine Kory J.ORCID

Abstract

AbstractRecovery of cardiac function is the ultimate goal of heart failure therapy. Unfortunately, cardiac recovery remains a rare and poorly understood phemomenon. Herein, we performed single nucleus RNA-sequencing (snRNA-seq) from non-diseased donors and heart failure patients. By comparing patients who recovered LV systolic function following LV assist device implantation to those who did not recover and donors, we defined the cellular and transcriptional landscape and predictors of cardiac recovery. We sequenced 40 hearts and recovered 185,881 nuclei with 13 distinct cell types. Using pseudobulk differential expression analysis to explicate cell specific signatures of cardiac recovery, we observed that recovered cardiomyocytes do not revert to a normal state, and instead, retain transcriptional signatures observed in heart failure. Macrophages and fibroblasts displayed the strongest signatures of recovery. While some evidence of reversion to a normal state was observed, many heart failure associated genes remained elevated and recovery signatures were predominately indicative of a biological state that was unique from donor and heart failure conditions. Acquisition of recovery states was associated with improved LV systolic function. Pro-inflammatory macrophages and inflammatory signaling in fibroblasts were identified as negative predictors of recovery. We identified downregulation of RUNX1 transcriptional activity in macrophages and fibroblasts as a central event associated with and predictive of cardiac recovery. In silico perturbation of RUNX1 in macrophages and fibroblasts recapitulated the transcriptional state of cardiac recovery. This prediction was corroborated in a mouse model of cardiac recovery mediated by BRD4 inhibition where we observed a decrease in macrophage and fibroblast Runx1 expression, diminished chromatin accessibility within peaks linked to the Runx1 locus, and acquisition of recovery signatures. These findings suggest that cardiac recovery is a unique biological state and identify RUNX1 as a possible therapeutic target to facilitate cardiac recovery.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3