Vesicles driven by dynein and kinesin exhibit directional reversals without external regulators

Author:

D’Souza Ashwin I.ORCID,Grover RahulORCID,Monzon Gina A.,Santen LudgerORCID,Diez StefanORCID

Abstract

AbstractIntracellular transport along cytoskeletal filaments propelled by molecular motors ensures the targeted delivery of cargoes to their destinations. Such transport is rarely unidirectional but rather bidirectional, including intermittent pauses and directional reversals owing to the simultaneous presence of opposite-polarity motors. It has been unclear whether such a complex motility pattern results from the sole mechanical interplay between opposite-polarity motors or requires external regulators. Here, we addressed this outstanding question by reconstituting cargo motility along microtubules in vitro by attaching purified Dynein-Dynactin-BICD2 (DDB) and kinesin-3 (KIF16B) to large unilamellar vesicles. Strikingly, we found that this minimal system is sufficient to recapitulate runs, pauses and reversals similar to in vivo cargo motility. In our experiments, reversals were always preceded by vesicle pausing and the transport directionality could be tuned by the relative numbers of opposite-polarity motors on the vesicles. Unexpectedly, during all runs the vesicle velocity was not influenced by the presence of the opposing motors. To gain mechanistic insight into bidirectional transport, we developed a mathematical model which predicts that low numbers of engaged motors are critical to transition between runs and pauses. Taken together, our results suggest that motors diffusively anchored to membranous cargo transiently engage in a tug-of-war during pauses where stochastic motor attachment and detachment events can lead to directional reversals without the necessity of external regulators.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3