Author:
Wang Hongli,Zhao Jiucheng,Lai Miao,Zhang Yingqing,Qiu Wenwu,Li Yanyan,Tu Hailian,Ling Qichang,Fu Xinfeng
Abstract
ABSTRACTHigh temperature in summer is an unfavorable factor for passion fruit (Passiflora edulis), which can lead to restricted growth, short flowering period, few flower buds, low fruit setting rate, severe fruit drop, and more deformed fruit. To explore the molecular physiology mechanism of passion fruit responding to high-temperature stress, we use ‘Zhuangxiang Mibao’, a hybrid passion fruit cultivar, as the test material. Several physiological indicators were measured and compared between high-temperature (average temperature 38°C) and nonmoral temperature (average temperature 25°C) conditions, including photosynthesis, chlorophyll fluorescence parameters, POD, SOD activity and malondialdehyde content. We performed RNA-seq analysis combined with biochemistry experiment to investigate the gene and molecular pathways that respond to high-temperature stress. The results showed that some physiological indicators in the high-temperature group, including the net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, transpiration rate, and the maximum chemical quantum yield of PS∥, were significantly lower than those of the control group. Malondialdehyde content was substantially higher than the control group, while superoxide dismutase and superoxide dismutase activities decreased to different degrees. Transcriptome sequencing analysis showed that 140 genes were up-regulated and 75 genes were down-regulated under high-temperature stress. GO and KEGG annotation analysis of differentially expressed genes revealed many metabolic pathways related to high-temperature stress. Further investigation revealed that 30 genes might be related to high-temperature stress, such as CAO, GSH, WRKY, and HSP, which have also been reported in other species. The results of real-time fluorescence quantitative PCR and RNA-seq of randomly selected ten genes are consistent, which suggests that the transcriptome sequencing results were reliable. Our study provides a theoretical basis for the mechanism of passion fruit response to high-temperature stress. Also, it gives a theoretical basis for the subsequent breeding of new heat-resistant passion fruit varieties.
Publisher
Cold Spring Harbor Laboratory