Separating Signal from Noise in Wastewater Data: An Algorithm to Identify Community-Level COVID-19 Surges

Author:

Keshaviah Aparna,Huff Ian,Hu Xindi C.,Guidry Virginia,Christensen Ariel,Berkowitz Steven,Reckling Stacie,Noble Rachel T.,Clerkin Thomas,Blackwood Denene,McLellan Sandra,Roguet Adélaïde,Mussa Isabel

Abstract

AbstractWastewater monitoring has shown promise in providing an early warning for new COVID-19 outbreaks, but to date, no approach has been validated to reliably distinguish signal from noise in wastewater data and thereby alert officials to when the data show a need for heightened public health response. We analyzed 62 weeks of data from 19 sites participating in the North Carolina Wastewater Monitoring Network to characterize wastewater metrics before and around the Delta and Omicron surges. We found that, on average, wastewater data identified new outbreaks four to five days before case data (reported based on the earlier of the symptom start date or test collection date). At most sites, correlations between wastewater and case data were similar regardless of how wastewater concentrations were normalized, and correlations were slightly stronger with county-level cases than sewershed-level cases, suggesting that officials may not need to geospatially align case data with sewershed boundaries to gain insights into disease transmission. Wastewater trend lines showed clear differences in the Delta versus Omicron surge trajectories, but no single wastewater metric (detectability, percent change, or flow-population normalized viral concentrations) adequately indicated when these surges started. After iteratively examining different combinations of these three metrics, we developed a simple algorithm that identifies unprecedented signals in the wastewater to help clarify changes in communities’ COVID-19 burden. Our novel algorithm accurately identified the start of both the Delta and Omicron surges in 84% of sites, potentially providing public health officials with an automated way to flag community-level COVID-19 surges.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3