AAV-delivered gene editing for latent genital or orofacial herpes simplex virus infection reduces ganglionic viral load and minimizes subsequent viral shedding in mice

Author:

Aubert MartineORCID,Haick Anoria K.,Strongin Daniel E.ORCID,Klouser Lindsay M.ORCID,Loprieno Michelle A.ORCID,Stensland Laurence,Santo Tracy K.,Huang Meei-Li,Hyrien Ollivier,Stone DanielORCID,Jerome Keith R.ORCID

Abstract

ABSTRACTHerpes simplex virus (HSV) establishes latency in ganglionic neurons of the peripheral nervous system, from which it can reactivate, causing recurrent disease and possible transmission to a new host. Current anti-HSV therapy does not eliminate latent HSV, and thus is only suppressive rather than curative. We developed a potentially curative approach to latent HSV infection and pathogenesis, based on gene editing using HSV-specific meganucleases delivered by adeno-associated virus (AAV) vectors. Our results demonstrated that a dual meganuclease therapy, composed of two anti-HSV-1 meganucleases delivered by a triple AAV serotype combination (AAV9, AAV-Dj/8, AAV-Rh10), can eliminate up to 97% of latent HSV DNA from ganglia in both ocular and vaginal mouse models of latent HSV infection. Using a novel pharmacological approach to reactivate latent HSV-1 in mice with the bromodomain inhibitor JQ-1, we demonstrated that this reduction in ganglionic viral load leads to a significant reduction of viral shedding from treated vs. control mice, with many treated mice showing no detectable virus shedding. In general, therapy was well tolerated, although dose-ranging studies showed hepatotoxicity at high AAV doses, consistent with previous observations in animals and humans. Also in agreement with previous literature, we observed subtle histological evidence of neuronal injury in some experimental mice, although none of the mice demonstrated observable neurological signs or deficits. These results reinforce the curative potential of gene editing for latent orofacial and genital HSV disease, and provide a framework for additional safety studies before human trials can begin.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3