Abstract
AbstractClustering of membrane-associated molecules is thought to promote interactions with the actomyosin cortex, enabling size-dependent transport by actin flows. Consistent with this model, in the C. elegans zygote, anterior segregation of the polarity protein PAR-3 requires oligomerization. However, through direct assessment of advection of PAR proteins, we not only find no links between PAR-3 advection and oligomer size, but also observe efficient advection of both anterior and posterior PAR proteins. Consequently, differential cortex engagement cannot account for selective size-dependent PAR protein transport. Instead, combining experiment and theory we demonstrate that segregation efficiency of PAR proteins by cortical flow is determined by the stability of membrane association, which is enhanced by clustering and specifies persistence of transport. Indeed, stabilizing membrane association was sufficient to invert polarity of a normally posterior PAR protein. Our data therefore indicate that advection of membrane-associated proteins is more pervasive than anticipated and thus cells must tune membrane association dynamics to achieve differential transport by cortical flows.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献