Pharmacokinetics and pharmacogenomics of clozapine in an ancestrally diverse sample: A longitudinal analysis and GWAS using clinical monitoring data from the UK

Author:

Pardiñas Antonio F.ORCID,Kappel Djenifer B.ORCID,Roberts Milly,Tipple Francesca,Shitomi-Jones Lisa M.,King Adrian,Jansen John,Helthuis Marinka,Owen Michael J.ORCID,O’Donovan Michael C.ORCID,Walters James T.R.ORCID

Abstract

BackgroundThe antipsychotic clozapine is the only drug with proven effectiveness against the treatment-resistant symptoms that affect 20-30% of those with schizophrenia. Despite this, clozapine is markedly under-prescribed, partly due to concerns about its narrow therapeutic range and adverse drug reaction profile. Both concerns are linked to drug metabolism, which varies across worldwide populations and is partially genetically determined. There is, however, a lack of clozapine pharmacogenomic data based on study participants of multiple ancestries.MethodsWe analysed data from 4,495 individuals linked to 16,068 assays from a clozapine monitoring service in the UK. Genomic information was used to identify five biogeographical ancestries (European, Sub-Saharan African, North African, Southwest Asian and East Asian) as well as admixed individuals. Pharmacokinetic modelling, GWAS, and a polygenic score association analysis were conducted on this longitudinal dataset using three outcome variables: two metabolite plasma concentrations (clozapine and norclozapine) and their ratio.FindingsA faster average clozapine metabolism was seen in those of Sub-Saharan African ancestry compared to Europeans. In contrast, East and Southwest Asians were more likely to be slow clozapine metabolisers. Eight pharmacogenomic loci were identified in the GWAS, with consistent cross-ancestral effects. Polygenic scores generated from these loci led to significant associations with clozapine outcome variables in the whole sample and within individual ancestries, with variances explained between 0.61%-7.26%.InterpretationLongitudinal cross-ancestry GWAS can discover pharmacogenomic markers of clozapine metabolism that, individually or as polygenic scores, have consistent effects across ancestries. While the potential clinical role of these predictors is evaluated, we provide strong evidence that ancestral differences in clozapine metabolism should be incorporated into clozapine dosing and managing protocols to optimise their utility for diverse populations.FundingMedical Research Council (MRC).

Publisher

Cold Spring Harbor Laboratory

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3