Simplified Within Host and Dose-response models of SARS-CoV-2

Author:

Xu JingsiORCID,Carruthers Jonathan,Finnie ThomasORCID,Hall IanORCID

Abstract

AbstractUnderstanding the mechanistic dynamics of transmission is key to designing more targeted and effective interventions to limit the spread of infectious diseases. A well-described within-host model allows explicit simulation of how infectiousness changes over time at an individual level. This can then be coupled with dose-response models to investigate the impact of timing on transmission. We collected and compared a range of within-host models used in previous studies and identified a minimally-complex model that provides suitable within-host dynamics while keeping a reduced number of parameters to allow inference and limit unidentifiability issues. Furthermore, non-dimensionalised models were developed to further overcome the uncertainty in estimates of the size of the susceptible cell population, a common problem in many of these approaches. We will discuss these models, and their fit to data from the human challenge study (see Killingley et al. (2022)) for SARS-CoV-2 and the model selection results, which has been performed using ABC-SMC. The parameter posteriors have then used to simulate viral-load based infectiousness profiles via a range of dose-response models, which illustrate the large variability of the periods of infection window observed for COVID-19.

Publisher

Cold Spring Harbor Laboratory

Reference24 articles.

1. Abramowitz, M. & Stegun, I. A. (1972), Handbook of Mathematical Functions, Dover.

2. Characterization of sars-cov-2 dynamics in the host’;Annual reviews in control,2020

3. Modelling upper respiratory viral load dynamics of sars-cov-2’;BMC medicine,2022

4. Epidemiological and economic impact of covid-19 in the us’;Scientific reports,2021

5. Sars-cov-2 viral load is associated with increased disease severity and mortality’;Nature communications,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3