A clinical stage LMW-DS drug inhibits cell infection by coronaviruses and modulates reactive cytokine release from microglia

Author:

Logan AnnORCID,Mazzon Michela,Bruce Lars,Barnes Nicholas M.

Abstract

AbstractMost coronaviruses infect animals including bats, birds and mammals, which act as hosts and reservoirs for the viruses, but the viruses can sometimes move host species and infect humans. Coronoviruses were first identified as human pathogens in the 1960s and now there are seven types known to infect humans. Whilst four of these types cause mild-to-moderate respiratory disease, the other three may cause more severe and possibly even fatal disease in vulnerable individuals particularly, with the most recent SARS-CoV-2 pandemic being associated with severe acute respiratory syndrome (SARS) in many infected people. The aim of the present study was to evaluate the potential of a unique low molecular weight dextran sulphate (LMW-DS) clinical stage drug, ILB®, to inhibit infection of human cells by the NL63 coronavirus assessed by immunofluorescence of viral particles, and also to see if the drug directly blocked the interaction of the SARS-CoV-2 viral spike protein with the ACE2 receptor. Furthermore, we evaluated if ILB® could modulate the downstream consequences of viral infection including the reactive cytokine release from human microglia induced by various SARS-CoV-2 variant spike proteins. We demonstrated that ILB® blocked ACE2:spike protein interaction and inhibited coronaviral infection. ILB® also attenuated the omicron-induced release of pro-inflammatory cytokines, including TNFα, from human microglia, indicating control of post-viral neuroinflammation. In conclusion, given the safety profile of ILB® established in a number of Phase I and Phase II clinical trials, these results highlight the potential of ILB® to treat patients infected with coronaviruses to both limit infectivity and attenuate the progression to severe disease. There is now an opportunity to translate these findings quickly by the clinical investigation of drug efficacy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3