Single-cell transcriptomic profiling of kidney fibrosis identifies a novel specific fibroblast marker and putative disease target

Author:

Rudman-Melnick ValeriaORCID,Adam Mike,Stowers Kaitlynn,Potter Andrew,Ma Qing,Chokshi Saagar M.,Vanhoutte Davy,Valiente-Alandi Iñigo,Lindquist Diana M.,Nieman Michelle L.,Kofron J. Matthew,Potter S. Steven,Devarajan Prasad

Abstract

AbstractBackgroundPersistent kidney fibroblast activation and tubular epithelial cell (TEC) injury are key contributors to CKD. However, transcriptional and cellular identities of advanced kidney disease, along with renal fibroblast specific markers and molecular targets contributing to persistent tubular injury, remain elusive.MethodsWe performed single-cell RNA sequencing with two clinically relevant murine kidney fibrosis models. Day 28 post-injury was chosen to ensure advanced fibrotic disease. Identified gene expression signatures were validated using multiple quantitative molecular analyses.ResultsWe revealed comprehensive single cell transcriptomic profiles of two independent kidney fibrosis models compared to normal control. Both models exhibited key CKD characteristics including renal blood flow decline, inflammatory expansion and proximal tubular loss. We identified novel populations including “secretory”, “migratory” and “contractile” activated fibroblasts, specifically labelled by newly identified fibroblast-specific Gucy1a3 expression. Fibrotic kidneys elicited elevated embryonic and pro-fibrotic signaling, including separate “Embryonic” and “Pro-fibrotic” TEC clusters. Also, fibrosis caused enhanced cell-to-cell crosstalk, particularly between activated fibroblasts and pro-fibrotic TECs. Analysis of factors mediating mesenchymal phenotype in the injured epithelium identified persistent elevation of Ahnak, previously reported in AKI, in both CKD models. AHNAK knockdown in primary human renal proximal tubular epithelial cells induced a pro-fibrotic phenotype and exacerbated TGFβ response via p38, p42/44, pAKT, BMP and MMP signaling.ConclusionsOur study comprehensively examined kidney fibrosis in two independent models at the singe-cell resolution, providing a valuable resource for the field. Moreover, we newly identified Gucy1a3 as a kidney activated fibroblast specific marker and validated AHNAK as a putative disease target.Significance StatementMechanistic understanding of kidney fibrosis is principal for mechanistic understanding and developing targeted strategies against CKD. However, specific markers and molecular targets of key effector cells - activated kidney fibroblasts and injured tubular epithelial cells - remain elusive. Here, we created comprehensive single cell transcriptomic profiles of two clinically relevant kidney fibrosis models. We revealed “secretory”, “contractile” and “migratory” fibroblasts and identified Gucy1a3 as a novel marker selectively labelling all three populations. We revealed that kidney fibrosis elicited remarkable epithelial-to-stromal crosstalk and pro-fibrotic signaling in the tubular cells. Moreover, we mechanistically validated AHNAK as a putative novel kidney injury target in a primary human in vitro model of epithelial-to-mesenchymal transition. Our findings advance understanding of and targeted intervention in fibrotic kidney disease.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3