RUNX1-deficient human megakaryocytes demonstrate thrombopoietic and platelet half-life and functional defects: Therapeutic implications

Author:

Lee KiwonORCID,Ahn Hyun Sook,Estevez BrianORCID,Poncz MortimerORCID

Abstract

AbstractHeterozygous defects in runt-related transcription factor-1 (RUNX1) are causative of a familial platelet disorder with associated myeloid malignancy (FPDMM). Since RUNX1-deficient animal models do not mimic FPDMM’s bleeding disorder or leukemic risk, establishment of a proper model system is critical to understand the underlying mechanisms of the observed phenotype and to identify therapeutic interventions. We previously reported an in vitro-megakaryopoiesis system using human CD34+-hematopoietic stem and progenitor cells that recapitulated the FPDMM quantitative megakaryocyte defect by decreasing RUNX1 expression using a lentiviral short-hairpin RNA (shRNA for RUNX1 or shRX) strategy. We now show that shRX-megakaryocytes have a marked reduction in agonist responsiveness. We then infused shRX-megakaryocytes into immunocompromised NOD-SCID gamma (NSG) mice and demonstrated that these megakaryocytes released fewer platelets than megakaryocytes transfected with a non-targeting shRNA, and these platelets had a diminished half-life. The platelets were also poorly responsive to agonists, unable to correct thrombus formation in NSG mice homozygous for a R1326H mutation in von Willebrand Factor (VWFR1326H), which switches species-binding specificity of the VWF from mouse to human glycoprotein Ibα. A small-molecule inhibitor RepSox, which blocks the transforming-growth factor beta pathway, and which rescued defective megakaryopoiesis in vitro, corrected the thrombopoietic defect, platelet half-life and agonist response, and thrombus formation in NSG/VWFR1326H mice. Thus, this model recapitulates the defect in FPDMM megakaryocytes and platelets, identifies previously unrecognized defects in thrombopoiesis and platelet half-life, and demonstrates, for the first time, reversal of RUNX1 deficiency’s hemostatic defects by a drug.Key PointsRUNX1-deficient megakaryocytes exhibit thrombopoietic and platelet defects in NSG/VWFR1326H mice.Pre-exposure of RUNX1-deficient megakaryocytes to a TGFβ1-pathway inhibitor ameliorated both defects, correcting hemostasis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3