Abstract
AbstractPhosphate is a necessary macronutrient for basic biological processes, plant growth, and agriculture. Plants modulate their root system architecture and cellular processes to adapt to phosphate deprivation albeit with a growth penalty. Excess application of phosphate fertilizer, on the other hand, leads to eutrophication and has a negative environmental impact. Moreover, phosphate mined from rock reserves is a finite and non-recyclable resource and its levels are nearing complete depletion. Here, we show that Solanum pennellii, a wild relative of tomato, is partially insensitive to phosphate deprivation. Furthermore, it mounts a constitutive response under phosphate sufficiency. We demonstrate that activated brassinosteroid signaling through a tomato BZR1 ortholog gives rise to the same constitutive phosphate deficiency response, which is dependent on zinc over-accumulation. Collectively, these results reveal an additional strategy by which plants can adapt to phosphate starvation.
Publisher
Cold Spring Harbor Laboratory