Abstract
ABSTRACTRNA-binding proteins are essential regulators of RNA processing and function. Translational repression assays can be used to study how they interact with specific RNA sequences by insertion of such a consensus sequence into the 5’ untranslated region of a reporter mRNA and measuring reporter protein translation. The straightforward set-up of these translational repression assays avoids the need for the isolation of the protein or the RNA providing speed, robustness, and a low-cost method. Here we report the optimization of the assay to function with linear RNA sequences instead of the previously reported hairpin type sequences to allow the study of a wider variety of RNA-binding proteins. Multiplication of a consensus sequence strongly improves the signal allowing analysis by both fluorescence intensity measurements and fluorescence activated cell sorting.
Publisher
Cold Spring Harbor Laboratory