Early detection of late blight in potato by whole-plant redox imaging

Author:

Hipsch MatanelORCID,Michael Yaron,Lampl NardyORCID,Sapir Omer,Cohen Yigal,David Helman,Rosenwasser ShiloORCID

Abstract

AbstractLate blight caused by the oomycete Phytophthora infestans is a most devastating disease of potatoes (Solanum tuberosum). Its early detection is crucial for suppressing disease spread. Necrotic lesions are normally seen in leaves at 4 dpi (days post inoculation) when colonized cells are dead, but early detection of the initial biotrophic growth stage, when the pathogen feeds on living cells, is challenging. Here, the biotrophic growth phase of P. infestans was detected by whole-plant redox imaging of potato plants expressing chloroplast-targeted reduction-oxidation sensitive green fluorescent protein (chl-roGFP2). Clear spots on potato leaves with a lower chl-roGFP2 oxidation state were detected as early as 2 dpi, before any visual symptoms were recorded. These spots were particularly evident during light-to-dark transitions and reflected mislocalization of chl-roGFP2 outside the chloroplasts, demonstrating perturbation of the chloroplast import system by the pathogen. Image analysis based on machine learning enabled systematic identification and quantification of spots and unbiased classification of infected and uninfected leaves in inoculated plants. Comparing redox to chlorophyll fluorescence imaging showed that infected leaf areas which exhibit mislocalized chl-roGFP2 also showed reduced non-photochemical quenching (NPQ) and enhanced quantum PSII yield (ΦPSII) compared to the surrounding leaf areas. The data suggest that mislocalization of chloroplast-targeted proteins is an efficient marker of late blight infection and demonstrate how it can be utilized for nondestructive monitoring of the disease biotrophic stage using whole-plant redox imaging.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3