Engineering non-cytotoxic delivery of proteins by T cells via fusion to NPC2

Author:

Saeedi Arash,Bandey Irfan N.,Leekha Ankita,Fathi Mohsen,Rezvan Ali,Montalvo Melisa J.,Wu Kwan-Ling,Bohat Ritu,Peng Weiyi,Varadarajan Navin

Abstract

AbstractEngineering cellular therapeutics by programming T cells has great potential in immunology. The primary mechanism employed by T cells for the specific transfer of proteins at the immunological synapse is via the lysosomal perforin pathway that facilitates the transfer of cytotoxic granzymes leading to apoptosis in target cells. Facilitating the delivery of non-cytotoxic proteins through perforin oligomers will dramatically expand the range of protein cargos that T cells can traffic to the target cells. Here, we have identified the intralysosomal protein, NPC2, as a chaperone that can facilitate the delivery of T-cell derived reporter proteins through perforin pores at the immunological synapse. Structural and biophysical considerations suggested that NPC2 could traverse through perforin pores and in vitro experiments confirmed the transport of purified NPC2 through perforin pores on cell membranes. To characterize the ability of NPC2 to facilitate the transfer of payloads in T cells, we constructed NPC2-mCherry fusion proteins in T cells. Using confocal microscopy and flow cytometry, we confirmed the colocalization of the NPC2 fused protein with lytic granules and the transfer of the fluorescent protein payload from T cells to target cells in co-culture experiments. The NPC2 fusion enabled the localization of mCherry to secretory lysosomes in mouse TCR CD8+ T cells and human CD4+ and CD8+ chimeric antigen receptor (CAR) T cells. These results illustrate that by using NPC2 as a molecular chaperone, the NPC2-perforin pathway can be exploited as a programmable molecular delivery system for cell-based therapies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3