Physiological constraints on the rapid dopaminergic modulation of striatal reward activity

Author:

Long Charltien,Lee Kwang,Yang Long,Dafalias Theresia,Wu Alexander K.,Masmanidis Sotiris C.

Abstract

AbstractWhile the contribution of dopaminergic (DA) neurons to associative learning is firmly established, their importance for influencing imminent behavior on short (subsecond) timescales is less clear. Mechanistically, it is thought that DA neurons drive these behavioral changes because of their ability to rapidly alter striatal spiking activity. However, due to limitations of previous approaches, the straightforward prediction that striatal spiking is rapidly influenced by physiologically relevant DA signals has not been rigorously tested. Here, we monitored changes in spiking responses in the ventral striatum while transiently reducing or increasing DA levels. Contrary to the predicted effect, neither spontaneous nor reward-evoked striatal spiking activity was strongly influenced by optogenetic manipulations, except when DA exceeded reward-matched levels. These findings challenge the view that DA plays a major role in rapidly influencing striatal activity. Finally, they suggest a need to distinguish between the modulatory functions of DA under physiological and supra-physiological conditions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3