Abstract
SummaryForcing budding yeast to chromatinize their DNA with human histones manifests an abrupt fitness cost. We previously proposed chromosomal aneuploidy and missense mutations as two potential modes of adaptation to histone humanization. Here we show that aneuploidy in histone-humanized yeasts is specific to a subset of chromosomes, defined by their centromeric evolutionary origins, however, they are not adaptive. Instead we show that a set of missense mutations in outer kineto-chore proteins drive adaptation to human histones. Further, we characterize the molecular mechanism of two mutants of the outer kinetochore DASH/Dam1 complex, which reduce aneuploidy by suppression of chromosome instability. Molecular modeling and biochemical experiments show that these two mutants likely disrupt a conserved oligomerization interface thereby weakening microtubule attachments. Lastly, we show that one mutant, DAD1E50D, while suppressing chromosome instability in mitosis, leads to gross defects in meiosis. In sum, our data show how a set of point mutations evolved in the histone-humanized yeasts to counterbalance human histone induced chromosomal instability through weakening microtubule interactions, eventually promoting a return to euploidy.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献