Development and validation of a methodology to measure exhaled carbon dioxide (CO2) and control indoor air renewal

Author:

Baselga MartaORCID,Alba Juan J.ORCID,Schuhmacher Alberto J.ORCID

Abstract

AbstractThe measurement of CO2 has positioned itself as a low-cost and straightforward technique to indirectly control indoor air quality, allowing the reduction of the concentration of potentially pathogen-loaded aerosols to which we are exposed. However, on numerous occasions, bad practice limits the technique for CO2 level interpreting and does not apply methodologies that guarantee air renewal. This work proposes a new methodology for measuring and controlling CO2 levels for indoor air in shared spaces. The proposed methodology is based on three stages: diagnosis, correction protocols, and monitoring/control/surveillance (MCS). The procedure is explained using a cultural center as an actual base case study. Additionally, the procedure was validated by implementing 40 voluntary commercial spaces in Zaragoza (Spain). Standardization of methods is suggested so that the measurement of CO2 becomes an effective strategy to control the airborne transmission of pathogens and thus prevent future Covid-19 outbreaks and novel pandemics.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3