Digestive exophagy of Bacterial Biofilms by an Amoeba Predator is Mediated by Specific Biofilm Recognition

Author:

Zanditenas Eva,Trebicz-Geffen Meirav,Domínguez-García Laura,Romero Diego,Kolodkin-Gal IlanaORCID,Ankri Serge

Abstract

AbstractThe human protozoan parasite Entamoeba histolytica is responsible for amebiasis, a disease endemic to developing countries. E. histolytica trophozoites are released from the cysts to colonize the large intestine, where they primarily feed on bacterial cells. In these scenarios, bacterial cells form aggregates or structured communities too large for phagocytosis. Our results show that E. histolytica can degrade pre-established biofilms of Bacillus subtilis and Escherichia coli in a dose- and time-dependent manner. Surprisingly, trophozoites incubated with B. subtilis biofilm exhibit a unique transcriptome signature compared to those incubated with planktonic cells or without bacteria. Biofilm-induced genes include cysteine proteases (CPs), and the general inhibition of CPs by E64D or by the use of specific small-RNA (sRNA)-based RNA interference impairs the degradation of biofilms by E. histolytica. The degradation of B. subtilis extracellular matrix (ECM) protein TasA by CPs is associated with partial biofilm digestion and activation of the stress response in the interacting B. subtilis cells. The interaction with B. subtilis biofilms was also associated with lower levels of oxidoreductases. Oxidoreductase downregulation can be a readout of the embedding of E. histolytica trophozoites within the biofilm-produced extracellular matrix, reducing their exposure to oxidative stress (OS). Our results indicate that parasites may digest biofilms by a controlled mechanism of digestive exophagy as secretion of digestive enzymes as a conserved mechanism for biofilm degradation allows phagocytic digestion of biofilm cells. Furthermore, the partially digested biofilms can serve as an unexpected shield protecting parasites from oxidative environments and thereby may regulate the persistence and virulence of the parasite.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3