Intrinsic and extrinsic inhibition of cortical flow underlies symmetry breaking during unilateral cytokinesis

Author:

Hsu Christina Rou,Sangha Gaganpreet,Fan Wayne,Zheng Joey,Sugioka KenjiORCID

Abstract

SummaryNon-concentric closure of the contractile ring, known as unilateral cytokinesis, often orients along the body axis to maintain tissue integrity in various animals. Despite the identification of unilateral cytokinesis regulators, the mechanism of initial symmetry breaking remains elusive. Here, we report that intrinsic and extrinsic inhibition of cortical flow breaks cytokinesis symmetry in Caenorhabditis elegans. By coupling high-resolution 4D imaging with an in vitro cell contact reconstitution assay, we found that unilateral cytokinesis of the zygote P0 and the two-cell stage blastomere AB are regulated by actin-dependent and adhesion-dependent mechanisms, respectively. Intracellular compression and intercellular adhesion in P0 and AB, respectively, locally inhibit both furrow-directed cortical flow and cleavage furrow ingression, resulting in eccentric ring closure. Our study demonstrates that local mechanical suppression of ring-dependent cell cortex pulling is a common symmetry-breaking cue underlying distinct modes of unilateral cytokinesis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3