The rapid radiation of Bomarea (Alstroemeriaceae: Liliales), driven by the rise of the Andes

Author:

Tribble Carrie M.ORCID,Alzate-Guarín Fernando,Gándara Etelvina,Vartoumian Araz,Burleigh J. GordonORCID,Zenil-Ferguson RosanaORCID,Specht Chelsea D.ORCID,Rothfels Carl J.ORCID

Abstract

AbstractComplex geological events such as mountain uplift affect how, when, and where species originate and go extinct, but measuring those effects is a longstanding challenge. The Andes arose through a series of complex geological processes over the past c. 100 million years, impacting the evolution of regional biota by creating barriers to gene flow, opening up new habitats, and changing local climate patterns. Bomarea are tropical geophytes with ranges extending from central Mexico to central Chile. Of the roughly 120 species of Bomarea, most are found in the Andes, and previous work has suggested that Bomarea diversified rapidly and recently, corresponding with the uplift of the Andes. While many Bomarea species occur over small, isolated ranges, Bomarea edulis occurs significantly beyond the ranges of any other Bomarea species (from central Mexico to northern Argentina) and is thought to have potentially humanmediated dispersal, due to its status as a pre-Columbian food plant. To untangle the potential drivers of diversification and biogeographic history in Bomarea, we used a target-capture approach to sequence nuclear loci of 174 accessions of 124 species, including 16 outgroup species from across the family (Alstroemeriaceae). We included 43 individuals of B. edulis from across its range to assess species monophyly and identify infraspecific phylogeographic patterns. We model biogeographic range evolution in Bomarea and test if Andean orogeny has impacted its diversification. We find that Bomarea originated in the central Andes during the mid-Miocene, then spread north, following the trajectory of major mountain uplift events. Most observed speciation events occurred during the Pleistocene, while global climate cooled and oscillated and the northern Andes achieved their current form. Furthermore, we find that Andean lineages diversified faster than their non-Andean relatives. These results demonstrate a clear macroevolutionary signal of Andean orogeny on this neotropical radiation.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3