Leishmania amazonensis controls macrophage-regulated cell death to establish chronic infection in vitro and in vivo

Author:

Lecoeur Hervé,Zhang Sheng,Varet Hugo,Legendre Rachel,Proux Caroline,Granjean Capucine,Bousso Philippe,Prina Eric,Späth Gerald F.

Abstract

SummaryPathogenic protists of the genus Leishmania have evolved various strategies to exploit macrophages as host cells and subvert their immuno-metabolic functions to favour intracellular parasite survival. Surprisingly little is known on how Leishmania affects regulated cell death (RCD) pathways of its host cell, even though increased survival of in vitro infected macrophages has been reported, and chronic macrophage infection in vivo causes the devastating immunopathologies of leishmaniasis. To overcome this limitation and gain first systems-level insight into the interaction between intracellular Leishmania and the host cell RCD pathways, including apoptosis, pyroptosis and necroptosis, we applied transcriptomic analyses on L. amazonensis-infected, primary macrophages (termed LIMs) and used YO-PRO-1 to monitor cell death by fluorescent microscopy. RNAseq analyses at day 3 post-infection (PI) revealed dichotomic dysregulation of more than 60% of RCD-related genes in LIMs, characterized by up-regulation of anti-RCD and down-regulation of pro-RCD markers, including key regulators common to the three forms of cell death such as casp8, fadd, tradd, tnfaip3, tax1bp1, birc3, and itch. This profile correlated with expression changes of transcription factors known to regulate RCD, including AP1 and NF-κB family members, pparγ and cebpβ. Consequently, LIMs showed remarkable longevity in culture for at least 50 days, despite a constant increase of parasite burden to about 100 parasites per cell, while non-infected cells were cleared from the culture in just a few days. Longitudinal expression analysis of LIMs at days 0, 3, 15, and 30 PI by RT-qPCR confirmed stable maintenance of this high longevity profile with the dichotomic decrease and increase of RCD-activators and -inhibitors, respectively. LIMs further showed significant resistance to RCD-inducing signals compared to non-infected cells, including CSF-1 deprivation (intrinsic apoptosis), actinomycin D treatment (extrinsic apoptosis), LPS/ATP stimulation (pyroptosis). Significantly, we extended the anti-RCD expression pattern and RCD resistance phenotype to L. amazonensis-infected macrophages recovered from lesions, thus validating our long-term in vitro infection system as an easily accessible model to study chronic macrophage infection. In conclusion, our analyses firmly document the pan-anti RCD effect of L. amazonensis on its macrophage host cell in vitro and in vivo and shed important new light on mechanisms underlying Leishmania chronic infection.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3