Unravelling drivers of local adaptation through Evolutionary Functional-Structural Plant modelling

Author:

de Vries JoradORCID,Fior SimoneORCID,Pålsson Aksel,Widmer AlexORCID,Alexander Jake M.ORCID

Abstract

SummaryLocal adaptation to contrasting environmental conditions along environmental gradients is a widespread phenomenon in plant populations, yet we lack a mechanistic understanding of how individual agents of selection contribute to local adaptation.Here, we developed a novel evolutionary functional-structural plant (E-FSP) model that simulates local adaptation of virtual plants along an environmental gradient. First, we validate the model by testing if it can recreate two elevational ecotypes of Dianthus carthusianorum occurring in the Swiss Alps. Second, we use the E-FSP model to disentangle the relative contribution of abiotic (temperature) and biotic (competition and pollination) selection pressures to elevational adaptation in D. carthusianorum.The model reproduced the qualitative differences between the elevational ecotypes in two phenological (germination and flowering time) and one morphological trait (stalk height), as well as qualitative differences in four performance variables that emerge from GxE interactions (flowering time, number of stalks, rosette area and seed production). Our results suggest that elevational adaptation in D. carthusianorum is predominantly driven by the abiotic environment.Our approach shows how E-FSP models incorporating physiological, ecological and evolutionary mechanisms can be used in combination with experiments to examine hypotheses about patterns of adaptation observed in the field.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3