White-tailed deer (Odocoileus virginianus) may serve as a wildlife reservoir for nearly extinct SARS-CoV-2 variants of concern

Author:

Caserta Leonardo C.,Martins MathiasORCID,Butt Salman L.,Hollingshead Nicholas A.,Covaleda Lina M.,Ahmed Sohel,Everts Mia,Schuler Krysten L.,Diel Diego G.ORCID

Abstract

ABSTRACTThe spillover of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from humans into white-tailed deer (WTD) and its ability to transmit from deer-to-deer raised concerns about the role of WTD in the epidemiology and ecology of the virus. In the present study, we conducted a comprehensive investigation to assess the prevalence, genetic diversity, and evolution of SARS-CoV-2 in WTD in the State of New York (NY). A total of 5,462 retropharyngeal lymph node (RPLN) samples collected from free-ranging hunter-harvested WTD during the hunting seasons of 2020 (Season 1, September-December 2020, n=2,700) and 2021 (Season 2, September-December 2021, n=2,762) were tested by SARS-CoV-2 real-time RT-PCR. SARS-CoV-2 RNA was detected in 17 samples (0.6%) from Season 1 and in 583 (21.1%) samples from Season 2. Hotspots of infection were identified in multiple confined geographic areas of NY. Sequence analysis of SARS-CoV-2 genomes from 164 samples demonstrated the presence multipls SARS-CoV-2 lineages as well as the co-circulation of three major variants of concern (VOCs) (Alpha, Gamma, and Delta) in WTD. Our analysis suggests the occurrence of multiple spillover events (human-to-deer) of the Alpha and Delta lineages with subsequent deer-to-deer transmission of the viruses. Detection of Alpha and Gamma variants in WTD long after their broad circulation in humans in NY suggests that WTD may serve as a wildlife reservoir for VOCs no longer circulating in humans. Thus, implementation of continuous surveillance programs to monitor SARS-CoV-2 dynamics in WTD are warranted, and measures to minimize virus transmission between humans and animals are urgently needed.SIGNIFICANCEWhite-tailed deer (WTD) are highly susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and are known to efficiently transmit the virus to other susceptible animals. Evidence of natural exposure or infection of wild WTD in North America raised significant concerns about their role on the ecology of the virus and its impact on the control of the coronavirus disease 2019 (COVID-19) pandemic. This comprehensive study demonstrates widespread infection of SARS-CoV-2 in the WTD populations across the State of New York. Additionally, we showed co-circulation of three major SARS-CoV-2 variants of concern (VOCs) in this wildlife population, long after their broad circulation in humans. These findings indicate that WTD – the most abundant large mammal in North America – may serve as a reservoir for variant SARS-CoV-2 strains that no longer circulate in the human population.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3