A natural history of networks: Modeling higher-order interactions in geohistorical data

Author:

Rojas AlexisORCID,Holmgren Anton,Neuman Magnus,Edler DanielORCID,Blöcker ChristopherORCID,Rosvall MartinORCID

Abstract

AbstractPaleobiologists often employ network-based methods to analyze the inherently complex data retrieved from geohistorical records. Because they lack a common framework for designing, performing, evaluating, and communicating network-based studies, reproducibility and interdisciplinary research are hampered. The high-dimensional and spatiotemporally resolved data also raise questions about the limitations of standard network models. They risk obscuring paleontological patterns by washing out higher-order node interactions when assuming independent pairwise links. Recently introduced higher-order representations and models better suited for the complex relational structure of geohistorical data provide an opportunity to move paleobiology research beyond these challenges. Higher-order models can represent the spatiotemporal constraints on the information paths underlying geohistorical data, capturing the high-dimensional patterns more accurately. Here we describe how to use the Map Equation framework for designing higher-order models of geohistorical data, address some practical decisions involved in modeling complex dependencies, and discuss critical methodological and conceptual issues that make it difficult to compare results across studies in the growing body of network paleobiology research. We illustrate multilayer networks, hypergraphs, and varying Markov time models for higher-order networks in case studies on gradient analysis, bioregionalization, and macroevolution, and delineate future research directions for current challenges in the emerging field of network paleobiology.

Publisher

Cold Spring Harbor Laboratory

Reference74 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3