Perceptual learning improves discrimination while distorting appearance

Author:

Szpiro Sarit F.A.ORCID,Burlingham Charlie S.ORCID,Simoncelli Eero P.ORCID,Carrasco MarisaORCID

Abstract

AbstractPerceptual sensitivity often improves with training, a phenomenon known as ‘perceptual learning’. Another important perceptual dimension is appearance, the subjective sense of stimulus magnitude. Are training-induced improvements in sensitivity accompanied by more accurate appearance? Here, we examine this question by measuring both discrimination and estimation capabilities for nearhorizontal motion perception, before and after training. Observers trained on either discrimination or estimation exhibited improved sensitivity, along with increases in already-large estimation biases away from horizontal. To explain this counterintuitive finding, we developed a computational observer model in which perceptual learning arises from changes in the precision of underlying neural representations. For each observer, the fitted model accounted for both discrimination performance and the distribution of estimates, and their changes after training. Our empirical findings and modeling suggest that learning enhances distinctions between categories, a potentially important aspect of real-world perception and perceptual learning.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3