Peroxisome biogenesis initiated by protein phase separation

Author:

Ravindran RiniORCID,Bacellar Isabel O. L.ORCID,Castellanos-Girouard Xavier,Zhang Zhenghao,Kisley LydiaORCID,Michnick Stephen W.ORCID

Abstract

SummaryPeroxisomes are organelles that perform beta-oxidation of fatty acids and amino acids. Both rare and prevalent diseases are caused by their disfunction1. Among disease-causing mutant genes are those required for protein transport into the peroxisome. The peroxisomal protein import machinery, also shared with chloroplasts, is unique in transporting folded and large, up to 10 nm in diameter, protein complexes into peroxisomes2 and current models postulate a large pore formed by transmembrane proteins3. To date, however, no pore structure has been observed. In the budding yeast Saccharomyces cerevisiae, the minimum transport machinery includes membrane proteins Pex13 and Pex14 and cargo protein-binding transport receptor, Pex5. Here we show that Pex13 undergoes liquid-liquid phase separation (LLPS) with Pex5-cargo. Intrinsically disordered regions (IDR) in Pex13 and Pex5 resemble those found in nuclear pore complex (NPC) proteins. Cargo transport into peroxisomes depends on the number but not patterns of aromatic residues in these IDRs, consistent with their roles as ‘stickers’ in associative polymer models of LLPS4,5. Finally, imaging Fluorescence Cross-Correlation Spectroscopy (iFCCS) shows that the transport of cargo correlates with transient focusing of GFP-Pex13/14 on the peroxisome membrane. Pex13 and Pex14 form foci in distinct time-frames, suggesting that they may form channels at different saturating concentrations of Pex5-cargo. Our results suggest a model in which LLPS of Pex5-cargo with Pex13/14 results in transient protein transport channels.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3