Selective whole-genome amplification reveals population genetics ofLeishmania braziliensisdirectly from patient skin biopsies

Author:

Pilling Olivia A.,Grace Cooper A.,Reis-Cunha João L.,Berry Alexander S. F.,Mitchell Matthew W.,Yu Jane A.,Malekshahi Clara,Krespan Elise,Go Christina K.,Lombana Cláudia,Song Yun S.,Amorim Camila F.,Lago Alexsandro S.,Carvalho Lucas P.,Carvalho Edgar M.,Brisson Dustin,Scott Phillip,Jeffares Daniel C.,Beiting Daniel P.

Abstract

ABSTRACTIn Brazil,Leishmania braziliensisis the main causative agent of the neglected tropical disease, cutaneous leishmaniasis (CL). CL presents on a spectrum of disease severity with a high rate of treatment failure. Yet the parasite factors that contribute to disease presentation and treatment outcome are not well understood, in part because successfully isolating and culturing parasites from patient lesions remains a major technical challenge. Here we describe the development of selective whole genome amplification (SWGA) forLeishmaniaand show that this method enables culture-independent analysis of parasite genomes obtained directly from primary patient skin samples, allowing us to circumvent artifacts associated with adaptation to culture. We show that SWGA can be applied to multipleLeishmaniaspecies residing in different host species, suggesting that this method is broadly useful in both experimental infection models and clinical studies. SWGA carried out directly on skin biopsies collected from patients in Corte de Pedra, Bahia, Brazil, showed extensive genomic diversity. Finally, as a proof-of-concept, we demonstrated that SWGA data can be integrated with published whole genome data from cultured parasite isolates to identify variants unique to specific geographic regions in Brazil where treatment failure rates are known to be high. SWGA provides a relatively simple method to generateLeishmaniagenomes directly from patient samples, unlocking the potential to link parasite genetics with host clinical phenotypes.AUTHOR SUMMARYLeishmania braziliensisis the main cause of cutaneous leishmaniasis in Brazil. Due to limitations in culturing, it is important to study the parasite in a culture-independent manner. We use selective whole genome amplification (SWGA) to explore parasite genomic diversity directly from patient biopsies. This method is inexpensive and can be broadly used to generate parasite genome sequence data sampled from differentLeishmaniaspecies infecting different mammalian hosts. We found high diversity among theL. braziliensisgenomes from Bahia, Brazil, which correlated with geographic location. By integrating these data with publicly available genome sequences from other studies spanning four countries in South America, we identified variants unique to Northeast Brazil that may be linked to high regional rates of treatment failure.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3