ePlatypus: an ecosystem for computational analysis of immunogenomics data
Author:
Kreiner Victor, Agrafiotis Andreas, Cotet Tudor-Stefan, Kuhn Raphael, Shlesinger Danielle, Manero-Carranza Marcos, Khodaverdi Keywan, Massery Solène, Guerci Lorenzo, Hong Kai-Lin, Han Jiami, Stiklioraitis Kostas, D’Arcy Vittoria Martinolli, Dizerens Raphael, Kilchenmann Samuel, Stalder Lucas, Nissen Leon, Vogelsanger Basil, Anzböck Stine, Laslo Daria, Kondorosy Melinda, Venerito Marco, García Alejandro Sanz, Feller Isabelle, Oxenius Annette, Reddy Sai T., Yermanos AlexanderORCID
Abstract
AbstractThe maturation of systems immunology methodologies requires novel and transparent computational frameworks capable of integrating diverse data modalities in a reproducible manner. Here, we present the ePlatypus computational immunology ecosystem for immunogenomics data analysis, with a focus on adaptive immune repertoires and single-cell sequencing. ePlatypus is a web-based platform and provides programming tutorials and an integrative database that elucidates selection patterns of adaptive immunity. Furthermore, the ecosystem links novel and established bioinformatics pipelines relevant for single-cell immune repertoires and other aspects of computational immunology such as predicting ligand-receptor interactions, structural modeling, simulations, machine learning, graph theory, pseudotime, spatial transcriptomics and phylogenetics. The ePlatypus ecosystem helps extract deeper insight in computational immunology and immunogenomics and promote open science.Accessibilityhttps://alexyermanos.github.io/Platypus/index.html
Publisher
Cold Spring Harbor Laboratory
Reference30 articles.
1. Agrafiotis, A. , Neumeier, D. , Hong, K.-L. , Chowdhury, T. , Ehling, R. , Kuhn, R. , Sandu, I. , Kreiner, V. , Starkie, D. , Lightwood, D. J. , Oxenius, A. , Reddy, S. T. , & Yermanos, A. (2021). B cell clonal expansion is correlated with antigen-specificity in young but not old mice. BioRxiv, 2021.11.09.467876. https://doi.org/10.1101/2021.11.09.467876 2. Interpretation of T cell states from single-cell transcriptomics data using reference atlases;Nature Communications,2021 3. Borcherding, N. , Bormann, N. L. , & Kraus, G. (2020). scRepertoire: An R-based toolkit for single-cell immune receptor analysis. F1000Research, 9. https://doi.org/10.12688/F1000RESEARCH.22139.2 4. CellPhoneDB: Inferring Cell-Cell Communication from Combined Expression of Multi-Subunit Ligand-Receptor Complexes;Nature Protocols,2020 5. Highly accurate protein structure prediction with AlphaFold
|
|