Drug repurposing for Cystic Fibrosis: identification of drugs that induce CFTR-independent fluid secretion in nasal organoids

Author:

Rodenburg Lisa W.,Delpiano Livia,Railean Violeta,Centeio Raquel,Pinto Madalena C.,Smits Shannon M.A.,van der Windt Isabelle S.,van Hugten Casper F.J.,van Beuningen Sam F.B.,Rodenburg Remco N.P.,van der Ent Cornelis K.,Amaral Margarida D.,Kunzelmann Karl,Gray Michael A.,Beekman Jeffrey M.,Amatngalim Gimano D.

Abstract

AbstractIndividuals with Cystic Fibrosis (CF) suffer from severe respiratory disease due to a genetic defect in the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene, which impairs airway epithelial ion and fluid secretion. New CFTR modulators that restore mutant CFTR function have been recently approved for a large group of people with CF (pwCF), but ∼19% of pwCF cannot benefit from CFTR modulators [1]. Restoration of epithelial fluid secretion through non-CFTR pathways might be an effective treatment for all pwCF. Here we developed a medium-throughput 384-wells screening assay using nasal CF airway epithelial organoids, with the aim to repurpose FDA-approved drugs as modulators of non-CFTR dependent epithelial fluid secretion. From a ∼1400 FDA-approved drug library, we identified and validated 12 FDA-approved drugs that induced CFTR-independent fluid secretion. Among the hits were several cAMP-mediating drugs, including β2-adrenergic agonists. The hits displayed no effects on chloride conductance measured in Ussing chamber, and fluid secretion was not affected by TMEM16A as demonstrated by knockout (KO) experiments in primary nasal epithelial cells. Altogether, our results demonstrate the use of primary nasal airway cells for mediumscale drug screening, target validation with a highly efficient protocol for generating CRISPR-Cas9 KO cells and identification of compounds which induce fluid secretion in a CFTR- and TMEM16A-indepent manner.

Publisher

Cold Spring Harbor Laboratory

Reference50 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3