CLPB3 is required for the removal of chloroplast protein aggregates and for thermotolerance in Chlamydomonas

Author:

Kreis Elena,Niemeyer JustusORCID,Merz Marco,Scheuring DavidORCID,Schroda MichaelORCID

Abstract

AbstractIn the cytosol of plant cells, heat-induced protein aggregates are resolved by ClpB/Hsp100 family member HSP101, which is essential for thermotolerance. For chloroplast family member CLPB3 this is less clear with controversial reports on its role in conferring thermotolerance. To shed light onto this issue, we have characterized two Chlamydomonas reinhardtii clpb3 mutants. We show that chloroplast CLPB3 is required for resolving heat-induced protein aggregates containing stromal TIG1 and the small heat shock proteins HSP22E/F in vivo and for conferring thermotolerance under heat stress. Although CLPB3 accumulates to similarly high levels as stromal HSP70B under ambient conditions, we observed no prominent constitutive phenotypes. However, we found decreased accumulation of the ribosomal subunit PRPL1 and increased accumulation of the stromal protease DEG1C in the clpb3 mutants, suggesting that reduction in chloroplast protein synthesis capacity and increase in protease capacity may compensate for loss of CLPB3 function. Under ambient conditions, CLPB3 was distributed throughout the chloroplast but reorganized into stromal foci upon heat stress, which mostly disappeared during recovery. CLPB3 foci were localized next to signals from HSP22E/F, originating largely to the thylakoid membrane occupied area. This suggests a possible role for CLPB3 in disentangling protein aggregates from the thylakoid membrane system.HighlightChloroplast CLPB3 in Chlamydomonas is required for resolving heat-induced protein aggregates and this activity confers thermotolerance under severe heat stress.During heat stress, CLPB3 organizes into stromal foci located next to the thylakoid membrane system, indicating a role for CLPB3 in disentangling protein aggregates from there.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3