Abstract
AbstractMitochondrial homeostasis regulates energy metabolism, calcium buffering, cell function and apoptosis. The present study has been conducted to investigate the implications of ubiquitin-encoding gene UBA52 in mitochondrial physiology. Transient expression of Myc-UBA52 in neurons significantly inhibited the rotenone-induced increase in reactive oxygen species generation, nitrite level and depleted glutathione level. Mass spectrometric and co-immunoprecipitation data suggested the profound interaction of UBA52 with mitochondrial outer membrane channel protein, VDAC1 in both the wild-type and Myc-α-synuclein overexpressed neuronal cells and in the Parkinson’s disease (PD)-specific substantia nigra and striatal region of the rat brain. In vitro ubiquitylation assay revealed that UBA52 participates in the ubiquitylation of VDAC1 through E3 ligase CHIP. Myc-UBA52 overexpression in neurons further improved the mitochondrial functionality and cell viability by preventing the alteration in mitochondrial membrane potential, mitochondrial complex-I activity, translocation of cytochrome-c and p-Nrf2 along with effect on intracellular calcium uptake, thus collectively inhibiting the opening of mitochondrial permeability transition pore. Additionally, Myc-UBA52 expression in neuronal cells offered protection against apoptotic and autophagic cell death. Altogether, our findings delineate functional association between UBA52 and mitochondrial homeostasis, providing new insights into the deterrence of dopaminergic cell death during acute PD pathogenesis.
Publisher
Cold Spring Harbor Laboratory