Design principles of 3D epigenetic memory systems

Author:

Owen Jeremy A.ORCID,Osmanović DinoORCID,Mirny Leonid A.ORCID

Abstract

AbstractThe epigenetic state of a cell is associated with patterns of chemical modifications of histones (“marks”) across the genome, with different marks typical of active (euchromatic) and inactive (heterochromatic) genomic regions. These mark patterns can be stable over many cell generations—a form of epigenetic memory—despite their constant erosion due to replication and other processes. Enzymes that place histone marks are often stimulated by the same marks, as if “spreading” marks between neighboring histones. But this positive feedback may not be sufficient for stable memory, raising the question of what is. In this work, we show how 3D genome organization—in particular, the compartmental segregation of euchromatin and heterochromatin— could serve to stabilize an epigenetic memory, as long as (1) there is a large density difference between the compartments, (2) the modifying enzymes can spread marks in 3D, and (3) the enzymes are limited in abundance relative to their histone substrates. We introduce a biophysical model stylizing chromatin and its dynamics through the cell cycle, in which enzymes spread self-attracting marks on a polymer. We find that marks localize sharply and stably to the denser compartment, but over several cell generations, the model generically exhibits uncontrolled spread or global loss of marks. Strikingly, imposing limitation of the modifying enzymes—a plausible but oft-neglected element—totally changes this picture, yielding an epigenetic memory system, stable for hundreds of cell generations. Our model predicts a rich phenomenology to compare to experiments, and reveals basic design principles of putative epigenetic memory systems relying on compartmentalized 3D genome structure for their function.

Publisher

Cold Spring Harbor Laboratory

Reference67 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3