Heme-induced genes facilitate endosymbiont (Sodalis glossinidius) colonization of the tsetse fly (Glossina morsitans) midgut

Author:

Runyen-Janecky Laura J.,Scheutzow Jack,Farsin Ruhan,Cabo Leah F.,Wall Katie E.,Kuhn Katrina M.,Amador Rashel,D’Souza Shaina J.,Vigneron Aurelien,Weiss Brian L.ORCID

Abstract

AbstractTsetse flies (Glossina spp.) feed exclusively on vertebrate blood. After a blood meal, the enteric endosymbiont Sodalis glossinidius is exposed to various environmental stressors including high levels of heme. To investigate how S. glossinidius morsitans (Sgm, the Sodalis subspecies that resides within the gut of G. morsitans) tolerates the heme-induced oxidative environment of tsetse’s midgut, we used RNAseq to identify bacterial genes that are differentially expressed in cells cultured in high versus lower heme environments. Our analysis identified 436 genes that were significantly differentially expressed (> or < 2-fold) in the presence of high heme [219 heme-induced genes (HIGs) and 217 heme-repressed genes (HRGs)]. HIGs were enriched in Gene Ontology (GO) terms related to regulation of a variety of biological functions, including gene expression and metabolic processes. We observed that 11 out of 13 Sgm genes that were heme regulated in vitro were similarly regulated in bacteria that resided within tsetse’s midgut 24 hr (high heme environment) and 96 hr (low heme environment) after the flies had consumed a blood meal. We used intron mutagenesis to make insertion mutations in 12 Sgm HIGs and observed no significant change in growth in vitro in any of the mutant strains in high versus low heme conditions. However, Sgm strains that carried mutations in genes encoding a putative undefined phosphotransferase sugar (PTS) system component (SG2427), fucose transporter (SG0182), bacterioferritin (SG2280), and a DNA-binding protein (SGP1-0002) presented growth and/or survival defects in tsetse midguts as compared to normal Sgm. These findings suggest that the uptake up of sugars and storage of iron represent strategies that Sgm employs to successfully reside within the high heme environment of its tsetse host’s midgut. Our results are of epidemiological relevance, as many hematophagous arthropods house gut-associated bacteria that mediate their host’s competency as a vector of disease-causing pathogens.Author summaryTsetse flies feed exclusively on vertebrate blood. This nutrient source contains large quantities of heme, which can be toxic to the fly’s associated microorganisms. We investigated the genetic mechanisms that underlie the ability of the bacterial endosymbiont, Sodalis glossinidius, to successfully reside within tsetse’s heme-rich midgut. Exposure of cultured S. glossinidius to high levels of heme induced changes in the expression of genes that encode proteins involved in transcription, replication and repair of DNA, inorganic ion transport, and carbohydrate transport and metabolism processes. Changes in the expression of several of these same S. glossinidius genes also occurred within tsetse’s midgut following exposure to a blood meal. S. glossinidius genetically engineered to present mutations in several of these heme regulated genes were unable to successfully colonize tsetse’s gut. Our results provide insight into how bacteria that live in the gut of blood feeding arthropods mitigate the toxic effects of excessive heme. This information is of epidemiological relevance, as many of these bacteria influence their host’s ability to transmit disease pathogens that cause disease in humans and domesticated animals.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3