Self-assembly of cellular neighborhoods converts stochastic signaling into sustained olfactory neurogenesis

Author:

Rajan Sriivatsan G.ORCID,Lombardo Joseph N.,Nacke Lynne M.,Manuchehrfar Farid,Wong Kaelan,Garcia Jocelyn,Liang JieORCID,Saxena AnkurORCID

Abstract

SUMMARYOlfactory neurogenesis occurs continuously throughout the lives of vertebrates, including in humans, and relies on the rapid, unceasing differentiation and integration of neurons into a complex multicellular network. The system-wide regulation of this intricate choreography is poorly understood; in particular, it is unclear how progenitor cells convert stochastic fluctuations in cell-cell signaling, over both space and time, into streamlined fate decisions. Here, we track single-cell level multicellular dynamics in the developing zebrafish olfactory epithelium, perturb signaling pathways with temporal specificity, and find that the continuous generation of neurons is driven by the spatially-restricted self-assembly of transient groups of progenitor cells, i.e. cellular neighborhoods. Stochastic modeling and validation of the underlying genetic circuit reveals that neighborhood self-assembly is driven by a tightly regulated bistable toggle switch between Notch signaling and the transcription factor Insulinoma-associated 1a that is responsive to inter-organ retinoic acid signaling. Newly differentiating neurons emerge from neighborhoods and, in response to brain-derived neurotrophic factor signaling, migrate across the olfactory epithelium to take up residence as apically-located, mature sensory neurons. After developmental olfactory neurogenesis is complete, inducing injury results in a robust expansion of neighborhoods, followed by neuroregeneration. Taken together, these findings provide new insights into how stochastic signaling networks spatially pattern and regulate a delicate balance between progenitors and their neuronal derivatives to drive sustained neurogenesis during both development and regeneration.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3