Abstract
AbstractAnimal behavioral decisions are dynamically formed by evaluating momentary sensory evidence on the background of individual experience and the acute motivational state. In insects, the mushroom body (MB) has been implicated in forming associative memories and in assessing the appetitive or aversive valence of sensory stimuli to bias approach versus avoidance behavior. To study the MB involvement in innate feeding behavior we performed extracellular single-unit recordings from MB output neurons (MBONs) while simultaneously monitoring a defined feeding behavior in response to timed odor stimulation in naïve cockroaches. All animals expressed the feeding behavior almost exclusively in response to food odors. Likewise, MBON responses were invariably and strongly tuned to the same odors. Importantly, MBON responses were restricted to behaviorally responded trials, which allowed the accurate prediction of the occurrence versus non-occurrence of the feeding behavior in individual trials from the neuronal population activity. During responded trials the neuronal activity generally preceded the onset of the feeding behavior, indicating a causal relation. Our results contest the predominant view that MBONs encode stimulus valence. Rather, we conclude that the MB output dynamically encodes the behavioral decision to inform downstream motor networks.
Publisher
Cold Spring Harbor Laboratory