Abstract
AbstractCommunication between distant cells can be mediated by extracellular vesicles (EVs) that deliver proteins and RNAs to recipient cells. Little is known about how EVs are targeted to specific cell types. Here we identify the Drosophila cell-surface protein Stranded at second (Sas) as a targeting ligand for EVs. Full-length Sas is present in EV preparations from transfected Drosophila Schneider 2 (S2 cells). Sas is a binding partner for the Ptp10D receptor tyrosine phosphatase, and Sas-bearing EVs preferentially target to cells expressing Ptp10D. We used co-immunoprecipitation and peptide binding to show that the cytoplasmic domain (ICD) of Sas binds to dArc1. dArc1 and mammalian Arc are related to retrotransposon Gag proteins. They form virus-like capsids which encapsulate Arc and other mRNAs and are transported between cells via EVs. The Sas ICD contains a motif required for dArc1 binding that is shared by the mammalian and Drosophila amyloid precursor protein (APP) orthologs, and the Sas and APP ICDs also bind to mammalian Arc. Sas facilitates delivery of dArc1 capsids bearing dArc1 mRNA into distant Ptp10D-expressing recipient cells in vivo.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献