Exploration of O-GlcNAc-transferase (OGT) glycosylation sites reveals a target sequence compositional bias

Author:

Chong P. AndrewORCID,Nosella Michael,Vanama Manasvi,Ruiz-Arduengo Roxana,Forman-Kay Julie D.ORCID

Abstract

AbstractO-GlcNAc transferase (OGT) is an essential glycosylating enzyme that catalyzes the addition of N-acetylglucosamine to serine or threonine residues of nuclear and cytoplasmic proteins. The enzyme glycosylates a broad range of peptide sequences and prediction of glycosylation sites has proven challenging. The lack of an experimentally verified set of polypeptide sequences that are not glycosylated by OGT has made prediction of legitimate glycosylation sites more difficult. Here, we tested a number of intrinsically disordered protein regions as substrates of OGT to establish a set of sequences that are not glycosylated by OGT. The negative data set suggests an amino acid compositional bias for OGT targets. This compositional bias was validated by modifying the amino acid composition of the protein Fused in sarcoma (FUS) to enhance glycosylation. NMR experiments demonstrate that the tetratricopeptide repeat (TPR) region of OGT can bind FUS and that glycosylation-promoting mutations enhance binding. These results provide evidence that the TPR recognizes disordered segments of substrates with particular compositions to promote glycosylation, providing insight into the broad specificity of OGT.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3