Loss of ANT1 Increases Fibrosis and Epithelial Cell Senescence in Idiopathic Pulmonary Fibrosis

Author:

Boatz Jennifer C.,Sui Justin,Hu QianjiangORCID,Li Xiaoyun,Zhang Yingze,Königshoff Melanie,Kliment Corrine R.ORCID

Abstract

ABSTRACTIdiopathic Pulmonary Fibrosis (IPF) is an interstitial lung disease characterized by progressive lung scarring and remodeling. Although treatments exist that slow disease progression, IPF is irreversible and there is no cure. Cellular senescence, a major hallmark of aging, has been implicated in IPF pathogenesis, and mitochondrial dysfunction is increasingly recognized as a driver of senescence. Adenine nucleotide translocases (ANTs) are abundant mitochondrial ATP-ADP transporters critical for regulating cell fate and maintaining mitochondrial function. We sought to determine how alterations in ANTs influence cellular senescence in pulmonary fibrosis. We found SLC25A4 (ANT1) and SLC25A5 (ANT2) expression is reduced in the lungs of IPF patients and particularly within alveolar type II cells by single cell RNA sequencing. Loss of ANT1 by siRNA in lung epithelial cell lines resulted in increased senescence markers such as beta-galactosidase staining and p21 by Western Blot and RT-qPCR. Bleomycin treated ANT1 knockdown cells also had increased senescence markers when compared to bleomycin treated control cells. Global loss of ANT1 resulted in worse lung fibrosis and increased senescence in the bleomycin and asbestos-induced mouse models of pulmonary fibrosis. This data supports the concept that loss of ANT1 drives IPF pathogenesis through mitochondrial dysfunction associated cellular senescence (MiDaS). In summary, loss of ANT1 induces cellular senescence, leading to abnormal tissue remodeling and enhanced lung fibrosis in IPF. Modulation of ANTs presents a new therapeutic avenue that may alter cellular senescence pathways and limit pulmonary fibrosis.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3