Tug-of-peace: Visual Rivalry and Atypical Visual Motion Processing in MECP2 duplication Syndrome of Autism

Author:

Bogatova DariaORCID,Smirnakis Stelios M.,Palagina Ganna

Abstract

AbstractExtracting common patterns of neural circuit computations in the autism spectrum and confirming them as a cause of specific core traits of autism is the first step towards identifying cell- and circuit-level targets for effective clinical intervention. Studies in human subjects with autism have identified functional links and common anatomical substrates between core restricted behavioral repertoire, cognitive rigidity, and over-stability of visual percepts during visual rivalry. To be able to study these processes with single-cell precision and comprehensive neuronal population coverage, we developed the visual bi-stable perception paradigm for mice. Our task is based on plaid patterns consisting of two transparent gratings drifting at an angle of 120° relative to each other. This results in spontaneous reversals of the perception between local component motion (motion of the plaid perceived as two separate moving grating components) and integrated global pattern motion (motion of the plaid perceived as a fused moving texture). Furthermore, this robust paradigm does not depend on the explicit report of the mouse, since the direction of the optokinetic nystagmus (OKN, rapid eye movements driven by either pattern or component motion) is used to infer the dominant percept. Using this paradigm, we found that the rate of perceptual reversals between global and local motion interpretations of the stimulus is reduced in the MECP2 duplication mouse model of autism.Moreover, the stability of local motion percepts is greatly increased in MECP2 duplication mice at the expense of global motion percepts. Thus, our model reproduces a subclass of the core features in human autism (reduced rate of visual rivalry and atypical perception of visual motion). This further offers a well-controlled approach for dissecting neuronal circuits underlying these core features.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3