Molecular mechanisms controlling the multistage post-translational processing of endogenous Nrf1α/TCF11 proteins to yield distinct proteoforms within the coupled positive and negative feedback circuits

Author:

Xiang Yuancai,Wang Meng,Hu Shaofan,Qiu Lu,Yang Fang,Zhang Zhengwen,Yu Siwang,Pi Jingbo,Zhang Yiguo

Abstract

ABSTRACTIn an attempt to terminate the chaotic state of the literature on Nrf1/TCF11 with various confused molecular masses, we herein establish a generally acceptable criterion required for identification of its endogenous full-length proteins and derivative isoforms expressed differentially in distinct experimental cell lines. Further work has been focused on the molecular mechanisms that dictate the successive multistate post-translational modifications (i.e. glycosylation by OST, deglycosylation by NGLY, and ubiquitination by Hrd1) of this CNC-bZIP protein and its proteolytic processing to yield multiple isoforms. Several lines of experimental evidence have demonstrated that the nascent Nrf1α/TCF11 polypeptide (non-glycosylated) is transiently translocated into the endoplasmic reticulum (ER), in which it becomes an inactive glycoprotein-A, and also folded in a proper topology within and around membranes. Thereafter, dynamic repositioning of the ER-resident domains in Nrf1 glycoprotein is driven by p97-fueled retrotranslocation into extra-ER compartments. Therein, glycoprotein of Nrf1 is allowed for digestion into a deglycoprotein-B and then its progressive proteolytic processing by cytosolic DDI-1/2 and proteasomes to yield distinct proteoforms (i.e. protein-C/D). The processing is accompanied by removal of a major N-terminal ~12.5-kDa polypeptide from Nrf1α. Interestingly, our present study has further unraveled that coupled positive and negative feedback circuits exist between Nrf1 and its cognate target genes, including those encoding its regulators p97, Hrd1, DDI-1 and proteasomes. These key players are differentially or even oppositely involved in diverse cellular signalling responses to distinct extents of ER-derived proteotoxic and oxidative stresses induced by different concentrations of proteasomal inhibitors.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3